Access Archon Column #35 – Working with Non-Normalized Data

By Helen Feddema

Recently I got a question from a reader who had to prepare a report on data in a table of job information with fields called Employee1, Employee2, and so on up to Employee5, with separate time worked on that job for each employee.  Of course, this kind of arrangement violates the rules of data normalization – except in some rare cases, data of this type should be stored in a separate table, linked by an ID field.

An aside:  Doesn’t Microsoft know this?  Why then does Outlook use this same non-normalized structure for storing contact phones and addresses?  Isn’t it about time Outlook had a proper normalized database structure, allowing for one-to-many links between contacts and their phone numbers, e-mail addresses, and physical addresses?

Anyway, that was the table structure, and it couldn’t be redesigned (at least, not right then), so he had to work with it.  Here is how I got the data for the different employees into a single query, and ended up with a cross-tab query that summarized the time worked by each employee, in minutes.

Stage 1

First I made five queries, using the fields Employee1 (2, and so on), Date, StartTime and EndTime from tblJobs.  Rather than use Employee1 in the query, I made an expression:

Employee: Nz([Employee1],"No Name")

to use as a query column.  This expression has two purposes:  (1) it translates the various Employee11 –Employee5 fields into the same field name:  Employee; and (2) it uses the Nz function to provide a meaningful phrase “No Name” for empty fields (since some records had an entry in the TimeWorked field, but no employee name).  I also made another expression, TimeWorked, based on the StartTime and EndTime fields, using the DateDiff function to extract the difference between StartTime and EndTime, in minutes:

TimeWorked: DateDiff("n",[StartTime],[EndTime])

The complete SQL statement for qryEmployee1 is:

SELECT Nz([Employee1],"No Name") AS Employee, tblJobs.Date, DateDiff("n",[StartTime],[EndTime]) AS [TimeWorked]

FROM tblJobs;

Stage 2

Next, I made a union query to gather together all the information in qryEmployee1 – qryEmployee5, with the following SQL statement:

SELECT Employee, Date, TimeWorked

FROM qryEmployee1

UNION ALL SELECT Employee, Date, TimeWorked

FROM qryEmployee2

UNION ALL SELECT  Employee, Date, TimeWorked

FROM qryEmployee3

UNION ALL SELECT  Employee, Date, TimeWorked

FROM qryEmployee4

UNION ALL SELECT  Employee, Date, TimeWorked

FROM qryEmployee5;

I used the UNION ALL statement instead of just UNION so that duplicates wouldn’t be weeded out – because it was quite possible for one employee to work the same number of minutes in several different records.

Stage 3

Finally, I used the union query quniEmployees as the data source for a cross-tab query, whose SQL statement is listed below:

TRANSFORM Sum(quniEmployees.TimeWorked) AS [SumOfTime Worked]

SELECT quniEmployees.Employee, Sum(quniEmployees.TimeWorked) AS [Total TimeWorked]

FROM quniEmployees

GROUP BY quniEmployees.Employee

PIVOT quniEmployees.Date;

This crosstab query makes a nice table listing the total minutes worked, and the minutes worked per day, for each employee (including No Name), regardless of which field (Employee1 – Employee5) the data was entered in.

	Employee
	Total TimeWorked
	6/1/99
	6/2/99
	6/3/99
	6/4/99
	6/5/99

	Ed Jones
	50
	25
	
	25
	
	

	Mark Lee
	100
	25
	50
	
	
	25

	Andrew Smith
	20
	10
	
	
	10
	

	No Name
	50
	
	25
	15
	10
	


