Access Archon Column #43 – Creating a Denormalized Table for Mail Merge

By Helen Feddema

Access is a relational database (except to purists), and mostly, that is great – we can set up separate tables of Contacts, Phones, and so forth, so as to eliminate duplication and save having to make the same change to numerous records if a Company’s name changes (Outlook lacks this feature, since it uses a flat-file MAPI database structure, which makes it very painful to change a piece of Company information for all that company’s contacts.)

But sometimes (rarely) the relational database structure gets in the way of doing something. One of these situations is creating a table of data to use as a Word mail merge document’s data source. Say you have a table of contacts (tblContacts), one record per contact, and another table of payments, tblPayments, with multiple records per contact. There can be up to 8 payments per contact, but never more. You want to print letters to the contacts, listing their payments, which could be from 1 payment to the full 8 payments. There is no way to use two linked tables together as a Word data source, so you need to somehow produce a single table that will have one record for each contact, with data in fields called Payment1, Payment2 and so on up to Payment8, filled with data from tblPayments.

There are two ways to accomplish this task. One way (the topic of this column) is to write data to hard-coded fields. This is practical when there is a limit to the number of linked items (such as our limit of 8 payments). However, if there can be an indefinite number of linked items (such as Orders per Customer), you need a different technique, which will be the topic of a future article.

To start with, create a query containing the two linked tables (in this case, qryContactsAndPayments). It should contain all the fields that you want to use as mail merge fields – say name and address fields from tblContacts, and several payment fields from tblPayments. The final step is to run a procedure (for convenience, it can be called from the RunCode action in a macro) which clears the old mail merge table and refills it with new data. As a shortcut, you can temporarily convert qryContactsAndPayments into a make-table query, and output a table called tblMailMerge; this way the Contact fields will have the correct names and data types, and you will just need to add the Payment fields 1-8.

This procedure that fills tblMailMerge is listed below:

Public Function CreateMergeFile()

'Written by Helen Feddema 8/6/99

'Last modified 8/8/99

On Error GoTo CreateMergeFileError

 Dim dbs As Database

 Dim rstMerge As Recordset

 Dim rstQuery As Recordset

 Dim strSQL As String

 Dim intPaymentNo As Integer

 Dim strID As String

 Dim strOldID As String

 'Clear old records

 DoCmd.SetWarnings False

 strSQL = "DELETE * FROM tblMailMerge;"

 DoCmd.RunSQL strSQL

 Set dbs = CurrentDb

 Set rstMerge = dbs.OpenRecordset("tblMailMerge", dbOpenDynaset)

 Set rstQuery = dbs.OpenRecordset("qryContactsAndPayments", dbOpenDynaset)

 strOldID = "XXX"

 Do Until rstQuery.EOF

 strID = Nz(rstQuery![ContactID])

 Debug.Print "ID: " & strID

 intPaymentNo = Nz(rstQuery![PaymentNo])

 Debug.Print "ID: " & strID & ", payment No. " & intPaymentNo

 With rstMerge

 .AddNew

 ![ContactID] = strID

 ![FullName] = Nz(rstQuery![FullName])

 ![CompanyName] = Nz(rstQuery![CompanyName])

 If Nz(rstQuery![Department]) <> "" Then

 ![Department] = Nz(rstQuery![Department])

 End If

 If Nz(rstQuery![JobTitle]) <> "" Then

 ![JobTitle] = Nz(rstQuery![JobTitle])

 End If

 End With

ProcessPayment:

 Select Case intPaymentNo

 Case 1

 rstMerge![PaymentDate1] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount1] = Nz(rstQuery![PaymentAmount])

 Case 2

 rstMerge![PaymentDate2] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount2] = Nz(rstQuery![PaymentAmount])

 Case 3

 rstMerge![PaymentDate3] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount3] = Nz(rstQuery![PaymentAmount])

 Case 4

 rstMerge![PaymentDate4] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount4] = Nz(rstQuery![PaymentAmount])

 Case 5

 rstMerge![PaymentDate5] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount5] = Nz(rstQuery![PaymentAmount])

 Case 6

 rstMerge![PaymentDate6] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount6] = Nz(rstQuery![PaymentAmount])

 Case 7

 rstMerge![PaymentDate7] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount7] = Nz(rstQuery![PaymentAmount])

 Case 8

 rstMerge![PaymentDate8] = Nz(rstQuery![PaymentDate])

 rstMerge![PaymentAmount8] = Nz(rstQuery![PaymentAmount])

 End Select

 strOldID = strID

 rstQuery.MoveNext

 If rstQuery.EOF Then

 GoTo EndMerge

 End If

 strID = Nz(rstQuery![ContactID])

 If strID = strOldID Then

 intPaymentNo = Nz(rstQuery![PaymentNo])

 Debug.Print "Same ID, payment " & intPaymentNo

 GoTo ProcessPayment

 End If

 rstMerge.Update

 Loop

EndMerge:

 rstMerge.Update

 rstMerge.Close

 rstQuery.Close

 dbs.Close

 DoCmd.OpenTable "tblMailMerge"

CreateMergeFileExit:

 Exit Function

CreateMergeFileError:

 MsgBox "Error No: " & Err.Number & "; Description: " & Err.Description

 Resume CreateMergeFileExit

End Function

696
